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Static vs. Dynamic Analysis

• Static analysis:  analyze source code or byte code 

◦ Imprecise 

◦ No run-time data 

• Dynamic analysis:  analyze during execution 

◦ Run-time values → precise
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Dynamic Code Coverage

• To detect malicious activity, first have to execute it 

• Example: 
 

message	=	<receive	confirmation	SMS> 
 
				<malicious	action>
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if	message.number	==	‘1234’:
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Concolic Testing
• Run all execution paths in application 

• Symbolic execution, solve constraints for inputs
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Specific Malicious Paths
• Malicious activity only executed in certain parts of the code
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IntelliDroid

• Targets specific parts of the application 

◦ Input generator for existing dynamic detector 

◦ Hybrid static and dynamic design 

• Implemented for Android 

• Improve malware analysis and detection
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Target Malicious Paths
• Malicious activity present only in certain parts of the code
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Target Malicious Paths
• Use static analysis to look for call paths to malicious activity
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Target Over-Approximation
• Target over-approximation of malicious behaviors
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Target Over-Approximation
• Target over-approximation of malicious behaviors
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Targeted Methods
• Use method invocations as over-approximation 

◦ Depends on attached dynamic malware detector 

• Existing dynamic detectors  
for Android: 

◦ Method invocations 

◦ System call traces 

◦ Anomaly detection 
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TABLE I. EXISTING ANDROID DYNAMIC ANALYSIS TOOLS

Dynamic Tool Goal Features for Analysis

AASandbox [10] Monitor behavior via track-
ing of system calls

System calls

Andromaly [36] Malware detection via sys-
tem resource usage

Low-level device fea-
tures (e.g. battery us-
age, CPU load)

CopperDroid [39] Monitor behavior via sys-
tem call tracking

System calls

Crowdroid [12] Monitor behavior via track-
ing of system calls

System calls

DroidBox [18] Sandbox to monitor exter-
nal accesses

Sink API methods

DroidRanger [50] Detect malware using pre-
specified behavioral foot-
prints and heuristics

Sequence of API
method invocations
and parameters

DroidScope [39] Plugins for API track-
ing, instruction tracing, and
taint tracking

API methods;
source/sink API
methods

RiskRanker [39] Detect malware using
known vulnerability
signatures

Sequence of API
method invocations

TaintDroid [19] Detect privacy leakage Source/sink API meth-
ods

VetDroid [47] Malware detection via per-
mission use behavior

Permission requests
(can be mapped to
API methods)

information leaves the application (i.e., sinks). By referring to
the documentation or searching through the source code, these
methods can be found and used as target methods. Sandboxing
tools such as DroidBox [18] track locations where data leaves
the application and target methods can be determined by
finding the instrumented API methods. Other tools such as
DroidScope [44] allow the user to trace specific API method
invocations; these API methods would serve as target methods.

Some dynamic tools, such as VetDroid [47], detect malware
by dynamically analyzing an application’s permission usage.
Although the tool does not trace API methods, the mapping
between permission use and API methods has been well-
studied and can be obtained from PScout [5] or Stowaway [22].
IntelliDroid can therefore be configured with target methods
that map to the permissions of interest. Since the majority of
dynamic analysis tools analyze API calls, using API calls as
our abstraction would enables IntelliDroid to generate inputs
for most of the dynamic analysis tools.

2) Analyzing System Calls: The next most common method
used by dynamic analysis tools is to analyze system calls. In
this case, the user must determine a mapping between the
system call method and API methods that use the system
call. Such tools include CopperDroid [39], AASandbox [10]
and Crowdroid [12]. If only specific system calls are traced
(e.g. file access), the user can use Android’s documentation
to find API methods that use the system call’s functionality
and generate the mapping manually. In general, however, it
can be difficult to map every system call to API methods in
this manner; therefore, the user may need to perform a one-
time static analysis of the Android framework. A backward
traversal of the framework’s call graph from the invocations
of system calls to public API methods should provide the
necessary mapping, which can then be used to obtain the target
methods. As a result, we believe IntelliDroid would be able to

generate inputs for dynamic analysis tools that analyze system
calls, albeit with more effort required on the part of the user.

3) Analyzing Low-Level Events: A few tools focus on
analyzing low-level events on the device. Andromaly [36] is
one such dynamic tool that tries to infer malicious activity
by detecting anomalies in CPU load and battery usage during
the application’s execution. The ability to attach IntelliDroid
to such analysis tools depends on how the features are being
traced. If the tool merely detects single instances of usage, it
may be possible to use IntelliDroid to trigger API methods that
correspond to those resources, such as those that invoke the
camera or GPS. However, IntelliDroid is not an appropriate
input generator for analysis tools that profile anomalies in
resource usage over time, as the IntelliDroid does not seek to
mimic realistic usage. In such cases, it would be more effective
to use a tool that aims to replicate normal use or have a user
manually execute the application.

While the specification of the targeted APIs for a dynamic
analysis is manual, it is not overly onerous. We demonstrate
this by extracting the APIs and having IntelliDroid generate
inputs for TaintDroid, for which we further discuss the asso-
ciated effort and effectiveness in Section V.

Although the IntelliDroid currently uses Android APIs
to represent behaviors that the dynamic analysis targets, the
design allows other forms of targets to be specified. In general,
if the user can determine a point in the code to which execution
is desired, this information can be given to IntelliDroid, which
will extract the call paths and path constraints to the specified
code location. This location can be as simple as a method
invocation, or can be derived from some other analysis. For
instance, to direct execution for a dynamic tool that focuses
on native code usage, IntelliDroid can be configured to extract
paths and constraints for invocations to native methods.

B. Identifying Paths to Targeted APIs

For a given application and set of targeted APIs, Intelli-
Droid first performs static analysis to identify the invocations
of targeted APIs and the paths leading to them. Because
Android is event-driven, an application may contain several
entry-point methods where the Android framework can transfer
execution to the application. These methods are normally event
handlers that receive various system events, such as callbacks
to control a component’s lifecycle, process sensor inputs, or
respond to UI events. Using an entry-point discovery mecha-
nism similar to FlowDroid’s [4], the application’s components
are read from its manifest and their lifecycle methods are
extracted. A partial call graph created from these entry-points
is used to search for instantiations of Android callback listeners
and to add overridden listener methods to the list of entry-
points. A new partial call graph is generated and the process
is repeated iteratively until no more entry-points are found.

The call graphs are generated using the event handler
entry-points as starting points for the code traversal. However,
Android mechanisms such as Intents and asynchronous calls
can cause execution to flow between methods in an application
even when there is no explicit function call. For instance,
Android allows execution to be transferred between different
components of an application using the Intent interface, so
the points at which Android intents are sent and received are
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Static Constraint Extraction
• Extract constraints on inputs that can trigger targeted paths
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Targeted Input Injection
• Inject constrained inputs to execute paths at run-time

Run-time

Static Dynamic

Path 
Constraints

Path 
Constraints
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Challenges
• Finding targeted paths using static analysis 

◦ Imprecision? 

• Executing path to suspicious code 

◦ Dependencies between paths? 

• Run-time input injection 

◦ Where to inject?
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Static Imprecision
• Static analysis cannot determine run-time values 

• Example: 
 

message	=	<receive	confirmation	SMS> 
 
				<malicious	action>
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Constraint

<SMS	message>.number	==	<file	A>

if	message.number	==	<file	A>.text:
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Run-time 
file A

“1234”

location
San Diego

file A
“1234”

location
San Diego

Using Run-time Data
• Solve constraints at run-time (with run-time data)
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constraints constraint 
solver

Static Dynamic

Path 1 
Constraints

Path N 
Constraints

…

! • ! !  DESIGN

…

<SMS	message>.number	==	<file	A>“1234”



UNIVERSITY OF TORONTOINTELLIDROID

Path Dependencies
• Data- and control-flow dependencies between call paths
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Path Dependencies
• Data- and control-flow dependencies between call paths
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1) <path to write X>
2) <path to malicious code>
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Run-Time Injection
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Application Injection
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Device-Framework Injection

21

Application

Event	

Handler

SMS	

Handler

Event	

Handler

Framework

System	

Service

SMS	

Service

System	

Service

Hardware/Device

Cellular	

Radio
Sensor

OK!

info on SMS?

! • ! !  DESIGN



UNIVERSITY OF TORONTOINTELLIDROID

Contributions
• Static imprecision 

◦ Dynamic constraint solving with run-time values 

• Path dependencies 

◦ Event chains 

• Consistent input injection 

◦ Device-framework injection
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Static Component
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Application

BootReceiver	

onReceive(Intent	i):	
if	i	==	BOOT_COMPLETED:	

a	=	1234

SMSReceiver	

onReceive(Intent	i):	
if	i	==	SMS_RECEIVED:	

handleSMS(…)	

handleSMS(addr,	msg):	
if	a	==	addr:	

sendTextMessage(…)

! ! • !  IMPLEMENTATION

App APK
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Static Component
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Extract event handlers

Find call paths

Extract path constraints

If dependency:  
find dependent path

Application

BootReceiver	

onReceive(Intent	i):	
if	i	==	BOOT_COMPLETED:	

a	=	1234

SMSReceiver	

onReceive(Intent	i):	
if	i	==	SMS_RECEIVED:	

handleSMS(…)	

handleSMS(addr,	msg):	
if	a	==	addr:	

sendTextMessage(…)

Add to event chain
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Targeted 
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Static Component
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Extract event handlers

Find call paths

Extract path constraints

If dependency:  
find dependent path

Application

BootReceiver	

onReceive(Intent	i):	
if	i	==	BOOT_COMPLETED:	

a	=	1234

SMSReceiver	

onReceive(Intent	i):	
if	i	==	SMS_RECEIVED:	

handleSMS(…)	

handleSMS(addr,	msg):	
if	a	==	addr:	

sendTextMessage(…)Output: target call  
paths and constraints

Add to event chain

! ! • !  IMPLEMENTATION

Targeted 
Behaviors App APK
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Implementation
• Static analysis (Android-specific):  WALA 1 

• Dynamic component: 

◦ Client program (Python) 
- Constraint solver:  Z3 2 

◦ Custom Android OS 
- IntelliDroidService:   system service to receive input 

information and inject events
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1 Watson libraries for analysis. http://wala.sourceforge.net. Accessed: September 2014. 
2 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Tools and Algorithms for the Construction and Analysis of 

Systems, pages 337–340. Springer, 2008. 
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Evaluation

• Can IntelliDroid be integrated with existing dynamic 
malware detectors? 

• Can it execute targeted behaviours at run-time? 

• Is the analysis time reasonable?

27
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Integration with TaintDroid
• Attached to TaintDroid (dynamic taint tracking tool) 

• Input generator to execute taint sources and sinks

28

IntelliDroid	

(Dynamic)

taint	source taint	sink

IntelliDroid	

(Static)
paths inputs

TaintDroid	

Dynamic	

Detector

leakage 
paths

e.g.	getDeviceId() sendTextMessage()
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IntelliDroid-Driven TaintDroid

• Tested on 26 privacy leaks in 17 malicious apps 1,2 

• IntelliDroid:  Triggered and detected all leaks 

◦ Monkey:  Missed 21 leaks 

• Executed < 5% of application code

29

1 Yajin Zhou and Xuxian Jiang. Dissecting Android malware: Characterization and evolution. In Proceedings of the 2012 IEEE Symposium 
on Security and Privacy, pages 95–109. IEEE, 2012. 

2 M. Parkour, “Contagio mobile,” 2015, http://contagiominidump. blogspot.ca/, Last Accessed Aug, 2015. 
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Targeted Input Injection
• Target malicious behaviours 

in Android Malware Genome 
and Contagio 

• Triggered 70 out of 75 
behaviours 

• Missed behaviors: 

◦ Encoding 

◦ File dependencies (currently 
not supported)

30
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Known Malicious Activity

Method Invocations

IntelliDroid
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Performance
• Scales for large-scale analysis of applications 

• Static analysis: 

◦ 138.4s per application 

• Dynamic constraint solving:  

◦ 4.22ms per targeted call path  

31

1 David Barrera, Jeremy Clark, Daniel McCarney, and Paul C. van Oorschot. Understanding and improving app installation security 
mechanisms through empirical analysis of android. In Proceed- ings of the Second ACM Workshop on Security and Privacy in 
Smartphones and Mobile Devices, SPSM ’12, pages 81–92, New York, NY, USA, 2012. ACM. 

constraints containing hash functions is beyond the capabilities
of the Z3 constraint solver that IntelliDroid uses. Similarly,
Backflash contained constraints that require Base64 decoding
and string/array manipulation, which IntelliDroid currently
does not fully handle. The remaining case occurred in Gold-
Dream and was the result of data flow through files. While
IntelliDroid currently does not support flow through files,
it would be possible to extend it to recognize file system
dependencies in the same manner as heap dependencies.

C. Performance

We measured two quantitative performance aspects of
IntelliDroid. The first is the reduction in analysis time Intelli-
Droid imparts by saving a dynamic analysis tool from having
to exercise irrelevant portions of the application. For this, we
measure the percentage of the application that IntelliDroid
actually dynamically executes to allow TaintDroid to detect
all privacy leaks. The second is the time IntelliDroid takes
to generate and inject inputs, which has two distinct phases:
(1) static extraction and analysis of path constraints; and (2)
dynamic generation of inputs based on run-time state and
constraint solving. We do not include the time to actually
run the dynamic analysis as this is more of a function of the
dynamic tool than of IntelliDroid.

Our previously described experiments with Intelli-
TaintDroid give a glimpse of the reduction in analysis time
that IntelliDroid can provide. While Monkey injected over
60K inputs, it was only able to trigger 7 of the 26 malicious
behaviors that IntelliDroid could trigger with an average of 72
inputs. However, Monkey is a fairly simplistic tool and it was
not possible to integrate more complex tools with TaintDroid.
Thus, we measure the average percentage of application code
that Intelli-TaintDroid must exercise and compare against the
amount of code that an input generator based on random
fuzzing or concolic testing might need to execute to achieve
the same detection results. By measuring the total number of
call graph nodes and edges in each application and comparing
with the number that IntelliDroid actually executes, we find
that IntelliDroid need only execute less than 5% of the code
on average in the applications we tested. On the other hand,
both random fuzzing and concolic testing, which inject inputs
without being aware of the goals of the dynamic analysis,
might have to statistically execute 50% or more of the ap-
plication before it has a better than 50% probability of trigger
all the relevant behavior in an application. This conservatively
suggests that IntelliDroid might cut execution time by as much
as 90% against state-of-the-art input generation methods, and
this estimate does not take into account that the number of
paths (and thus inputs) is actually exponentially related to the
size of the code. In addition, fuzzing and concolic testing do
not actively determine the correct order in which inputs must
be injected so they may have to try several permutations to
achieve full coverage.

IntelliDroid’s static analysis time and the number of inputs
it must inject is heavily dependent on the number of target
APIs specified. Thus, to simulate a worst-case scenario with a
very comprehensive dynamic analysis engine, we use an even
larger set of targeted APIs than in our previous experiments
by deriving them from the set of potentially malicious APIs
identified by the FlowDroid static analysis tool [4]. The fact

(a) Static Analysis (b) Constraint Solving

Fig. 2. IntelliDroid Timing Distribution

that FlowDroid uses static analysis is not relevant – we use
this set mainly because it is a large collection of Android
APIs that have been identified as potentially malicious. We
note that this set of targeted APIs is a superset of both the
targeted APIs used by TaintDroid and the targeted APIs used
by the hypothetical malware detection tool in our experiments,
containing a total of 228 API methods. The extra methods in
the FlowDroid set include more conservative sources and sinks,
such as those where data is sent via an intent or printed in a
log message. These generic API methods are commonly used
by both malicious and benign applications.

We measure the time IntelliDroid takes to find invocations
of the targeted APIs and extract the constraints required
for input generation using a combination of two datasets:
1260 malware samples from the Android Malware Genome
project [49] and 1066 benign applications from the Android
Observatory [8]. The Android Observatory dataset was ob-
tained by filtering for applications that declare the permissions
necessary for the set of targeted APIs used in this experiment.
The static component, running with a time limit of 60 minutes
(enforced for timeliness of results), took an average of 138.4
seconds per application and 88.1% completed analysis within
the time limit, with the distribution shown in Figure 2a. The
bigger set of targeted APIs and the larger applications in the
benign dataset used in this experiment resulted in an average
of 1760 inputs generated for each benign application. Despite
this large number, the extracted paths still comprise less than
5% of the code in each application on average.

The analysis time of IntelliDroid is dominated by WALA’s
call graph extraction and the search for targeted API invo-
cations, which must be performed on the entire application
and accounts for roughly 50% of the static analysis time. We
found that the applications that required longer analysis times
often used advertisement libraries. The extra code included
with these libraries resulted in larger call graphs and thus,
more time was spent searching for targeted APIs.

Unlike the static component, the dynamic generation of
input values must be extremely quick since it is performed for
every injected input, of which there could be several thousand
per application. Because the constraint solver component of
IntelliDroid is completed during run-time, it is especially
important that it runs efficiently. We measure the total time
taken by the Z3 solve the constraints for all target paths in
our dataset to be an average of 4.22 milliseconds, with the
distribution show in Figure 2b. As a result, we expect the main
run-time cost to be that of the dynamic analysis tool itself.
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Conclusion
• Targeted input generation for effective dynamic malware 

detection 

• IntelliDroid 

◦ Static constraint extraction with run-time data 

◦ Event chains and framework injection 

• Integrated with existing dynamic tools (TaintDroid) 

• Improve effectiveness, reduce amount of code to be 
executed (< 5%)
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