Tackling runtime-based
obfuscation in Android with TIRO

Michelle Wong and David Lie

University of Toronto

@% The Edward S. Rogers Sr. De ettt Usenix Security 2018
f[_]t -al & Co mputer bkng ‘Ing

X UNIVERSITY OF TORONTO

Android malware and analysis

* Mobile devices are a valuable target for malware developers
o Access to sensitive information and functionality

* Arms race between malware developers and security analyzers

=
Malware!
Because X

UNIVERSITY OF TORONTO

Java obfuscation

e Most Android applications written In Java Language-based Qbfuscatign
e QObfuscation using Java features -
Application I_.’

o Reflection DEX Code

Application

JNI

Native Code

o Dynamic code loading Framework APIs

* Native methods

 do 7], where _
e e | veviee |
Device

Does it do X?
Is it malware?

UNIVERSITY OF TORONTO

Native obfuscation

e (Can avoid runtime entirely by using Full-native code obfuscation
native code

o No Java code or invocations to Java
methods Application

Native Code

®* Seems very little malware do this

Device

> Framework APIs mostly in Java

o Requires access to undocumented
low-level interfaces of system services

Obfuscation via runtime tampering

Language-based o | | Full-native code
obfuscation ease of use, reliability difficulty of analysis obfuscation

T
S Runtime-based obfuscation S—

Application
DEX Code

Application

Native Code

| do Yand only Y
(I mean X)

Framework APIs

Not malware! ART/DVM Runtime
Doesn’t do X

Linux
Device

UNIVERSITY OF TORONTO

Unexpected code behavior

Unexpected Unexpected Unexpected
classes methods instructions
I’'m loading I’'m invoking I’'m executing
class A method B instrs <abc>
DEX D: from DEX D from class A from method B

class A:
method B:
<abc> Actually... Actually... Actually...
- T N £ T T TN £ T TS
| Loading | | Invoking | | Executing |
class E method I instrs <hac>
| from DEX V | | fromclass L | | from method K |

N o e e Y N e e e YN e e e

<native>
o UNIVERSITY OF ToRONTO

Android RunTime (ART)

* |nvestigated how code is loaded and executed within ART

class A:

method B:

<abc>

ART code loading

class A: —
java.lang. DEX £il
method B: DexFile i1le
<abc> (mmap)
- class E:
method V:

O © D:x file hooking <bad>

ART code loading

class A: DEX file

(mmap) Unexpected classes
and methods

method B:

<abc>

method V: -.

<bad>

art::

ArtMethod

O @ Dcx file hooking

6 Bytecode overwriting

ART code execution

Invoke B()
in class A

ART

mirror::
Class

(inherited from
class O)

class A:

DEX file
(mmap)

method B:

<abc>

art::

class A: :
ArtMethod

method B:
<abc>

9 ArtMethod hooking

Unexpected methods

ART code execution

class A:

method B: DEX file
(mmap)

mirror::
Class Unexpected instructions

art::

ArtMethod

<abc>

class A:
method B:
<bad>

code item offset

0 ArtMethod hooking
9 Method entry-point

hooking @

e Instruction hooking/
modification

entry point

Runtime state tampering in ART

DEX D: @

class A:
= § %8 @ #H
method B:

<abc>
O © Dcx file hooking @ ArtMethod hooking
. | |
e Bytecode overwriting e Method entry-point ?
hooking \ |

e Instruction hooking/
modification

Deobfuscation

o Unified framework to handle language-based and runtime-based obfuscation
e Pure static analysis: imprecise, no run-time information to deobfuscate
o Reflection targets, dynamically loaded code, etc.

® Pure dynamic analysis: lack of code coverage

l l l l

?

Targeted execution

path constraints

Interesting

Static behavior

-

—

inject inputs dynamic

_

' Wong, M.Y,, and Lie ,D. IntelliDroid: A targeted input generator for the dynamic analysis of Android malware. In Proceedings of the Annual Symposium on Network and
Distributed System Security (NDSS), 2016.

Dealing with obfuscation

-

static

_

- obfuscation
locations
>

path constraints

% AN) xl\?
o: - 5N

—

inject inputs dynamic

_|

UNIVERSITY OF TORONTO

TIRO: A hybrid iterative deobfuscator

static

Instrument

instrumented deobfuscated

obfuscation application
locations

run-time values,
extracted code

4 R

security
Observe analysis

= Y,

dynamic

Target — Instrument — Run — Observe

* |dentify obfuscation
locations

onCreate() ({
* Extract call paths and

constraints

7 Method method = klass.getMethod(decrypt(“wzjg..”));

8 method.invoke(receiver, args);

Target (Reflection)

onCreate() — .. = Method::invoke()

Target — Instrument — Run — Observe

Instrument

® |nhstrument

obfuscation location
onCreate() ({

* Report dynamic
values and code

7 Method method = klass.getMethod(decrypt(“wzjg..”));

8 method.invoke(receiver, args);

Target (Reflection) Instrument

onCreate() — .. = Method::invoke() log(..., method.getName())

Target — Instrument — Run — Observe

- D D

* Generate inputs from

targeti
onCreate() { esHne

* |nject inputs to run
obfuscation locations

7 Method method = klass.getMethod(decrypt(“wzjg..”));

Run Instrument
Log: refl,onCreate,8,“foo” log(..., method.getName())

Target — Instrument — Run — Observe

Target Instrument Run Observe

e Monitor

deobfuscation log
onCreate() {

* Extract dynamic
values and code

7 Method method = klass.getMethod(decrypt(“wzjg..”));

8 method.invoke(receiver, args);---

Run : Observe
EEEE K

Log: refl,onCreate,8,“fo0” onCreate() — foo()

Handling runtime-based obfuscation

o — — — —
: : | hidden ‘

<java> <native> |====7=--- > _
<java> '

modifies runtime state

Record original Check
ART state ART state

Runtime-based deobfuscation

e Example: Instruction hooking

onCreate() {

nativeFoo();

bar();

Runtime-based deobfuscation

e Example: Instruction hooking
Instrument (ART runtime)

onCreate() {

art::
ArtMethod

Target

<native code>

7 nativeFoo(); code item offset <

3 bar(); entry point

Run

Log: onCreate,7,bar[code i1tem],xyZz Observe
Extracted DEX: <Xxyz> onCreate() — method xyz()

Iterative deobfuscation

Instrument

o Example: 2nd jteration

onCreate() { --->method xyz() {

11 Method method =

7 nativeFoo(); klass.getMethod(decode(*“vbs..”));

8 bar(); --------- 12 method.invoke(receiver, args);

Target (Reflection)

Implementation

e Static: Soot framework? for analysis and instrumentation

* Dynamic:

o Modified AOSP with instrumented ART runtime

e Android 4.4,5.0,6.0

o Monitoring process to parse deobfuscation log and extract bytecode

Evaluation

e Ability to detect and deobfuscate techniques in modern Android malware

* Investigate use of language-based and runtime-based obfuscation in
malware

®* Deobfuscation performance (in paper)

TIRO: Detection and deobfuscation

® Labeled obfuscated samples, categorized by obfuscator/packer

Language-based Runtime-based

aliprotect
baiduprotect
dexprotector
ijiamipacker

naga_ pha

qihoopacker

secshell ®

L— 100 ——L—— 5399 — I3l 430

Obfuscation usage in malware

o Obfuscated malware samples from VirusTotal

Language-based Runtime-based
Reflection 58.5% DEX file hooking 64.0%
Dynamic loading 79.9% Class data overwriting 0.7%
Direct invocation 52.2% ArtMethod hooking 0.5%
80%
Reflected invocation 0.1% Method entry-point hooking 0.3%
Native invocation 49.2% Instruction hooking 33.7%
Native methods 96.8% Instruction overwriting 0.1%

Conclusion

e New category of obfuscation techniques in Android:

runtime-based obfuscation
® TIRO: A hybrid iterative deobfuscation framework
o Handles both language-based and runtime-based techniques
o Deobfuscates modern malware and uncovers sensitive behaviors

o 80% of samples from VirusTotal dataset use runtime-based obfuscation

