
Driving Execution of Target Paths in 
Android Applications with (a) CAR
Michelle Y. Wong and David Lie
University of Toronto

AsiaCCS 2022



CAR     University of Toronto

Outline

● Background on targeted execution

● CAR - Context Approximation and Refinement
○ Combination of static and dynamic techniques

○ 3.1x increase in coverage of sensitive targets in Android applications

● Design and Implementation

● Evaluation

2



CAR     University of Toronto

Android security

● Smartphones contain a trove of personal data and sensitive functionality
○ Contacts, emails, messages

○ Location and health tracking

○ Access to bank accounts and smart home devices

● Lucrative target for malware developers

● Application marketplaces want to remove malware from their offerings

3



CAR     University of Toronto

Program analysis for malware detection

Static analysis

● Analyze application’s code or binary

● No access to run-time data during analysis

● Trade-off between precision, completeness, and scalability

Dynamic analysis

● Analyze application during execution

● Analysis limited to parts of applications that are executed

● Malware activity hidden if only activated under specific triggering 

conditions

4



CAR     University of Toronto

Increasing Dynamic Code Coverage

● Code exploration to execute more of the application (e.g. fuzzing, symbolic 
execution)
○ Goal is full application coverage

● Security analysis aims to detect specific interesting or suspicious behaviours
○ Occur in only a few locations in the application’s code base

5



CAR     University of Toronto

Alternative Approach: Targeted Execution

Challenges:

● How to find and target interesting behaviours and paths?

● How to inject and execute specific paths?

6



CAR     University of Toronto

Targeting using Static Information

Prior work:

● Guided symbolic/concolic execution [expensive]
● Forced execution (modify conditional branches) [unsound]
● Static symbolic constraint analysis to inject input/system values [incomplete]

7

Static Analysis
(strength: coverage)

Find target paths

Extract “targeting” 
information

Dynamic Analysis
(strength: precision)

Trigger target path

Detect malicious 
behavior



CAR     University of Toronto

Existing Approach to Static Targeting

Prior work (IntelliDroid and TIRO):

● Find target paths that reach sensitive targets.
● Use static constraint analysis to extract path conditionals.
● Solve conditional expression to obtain input/system values to inject.
● Injected values resolve path dependencies, path is executed.

8

if x > 0

if y = 5



CAR     University of Toronto

Limitations

● Static constraint analysis is expensive
○ Limit scope based on depth of auxiliary 

methods.
○ Unresolved dependencies for methods 

outside of analysis scope.
○ Prevent path from being executed in full 

[incomplete].

● Injection at system level is expensive.
○ Need to model each input or API type.
○ Any missing models leads to inability to 

trigger path in execution [incomplete].

9

constraint analysis scope

?

unresolved dependencies

X

applicationsystem

if helper() = 0
?

if globalVal != null ?



CAR     University of Toronto

CAR: Context Approximation and Refinement

Context Approximation and Refinement

● Combination of static and dynamic techniques to infer context for a target path

10

Context - Set of program state accessed by a target path and constrained by its execution

● Input, global values, method/API return values



CAR     University of Toronto

Handling Static Targeting Limitations

● Scalability requires limiting scope of constraint analysis.

● Create an approximate context.
○ Split control flow of target path into realized, modeled, and unconstrained methods

11

constraint analysis scope



CAR     University of Toronto

Example: Approximate Context Generation

void onClick(View view) {
  TextView x = (TextView)view;
  if (x.position > 5) {
    method1();
  }
}
void method1() {
  if (helper1()) {
    <target 0>
  }
}
bool helper1() {
  methodWithSideEffect();
  return helper2() && Config.Enabled;
}

12

void PathDriver0() {
  View arg0 = new ConstrainedTextView_Path0();
  Config.Enabled = true;
  onClick(arg0);
}
class ConstrainedTextView_Path0 extends TextView {
  void <init>() {
    super.<init>();
    this.position = 6;
  }
}
static void helper2() { // Modified
  if (<Path 0>) {
    return true;
  } else {
    return original_helper2a();
  }
}

realized

modeled

unconstrained

constrained subclass

constrained method

CAR: injection.dex



CAR     University of Toronto

Handling Unresolved Dependencies
● Unconstrained methods can contain 

unresolved dependencies.

● Refine context using dynamic error recovery.
○ Lightweight instrumentation to transparently 

resolve dependency errors as they occur.

● CAR: Dynamic monitor
○ Tracks errors arising from unresolved 

dependencies.

○ Resolves dependency through error recovery.

● Unconstrained method proceeds, returns to 

target path.

13

✓X



CAR     University of Toronto

Example: Dynamic Context Refinement

Most common: NullPointerException

14

...

invoke r1, SomeObject.foo()

...

unconstrained method

unresolved dependency (r1 = 0)

Runtime raises 
NullPointerException

!

r1 = <RecoveryObject>

CAR’s dynamic monitor

Identify r1 as root cause

Reuse existing instance of 
SomeObject

(or create a new one)

Populate r1 with recovery 
object

Return execution to 
instruction.

Cache of recently 
allocated objects



CAR     University of Toronto

Implementation

Static component

● Built on the Soot static analysis framework.

● Based on IntelliDroid and TIRO.
○ Increased dependency tracking for contexts.

○ Added code generation to produce event driving framework for approximated context.

Dynamic component

● Built on AOSP (Android 10).

● Instrumented class loader to inject generated context classes.

● Instrumented exception handler to track and resolve dependencies for context refinement.

15



CAR     University of Toronto

Evaluation

Metrics

● Effectiveness of contexts
○ Target coverage against existing state-of-the-art dynamic tools.
○ False positives and infeasible paths.

● Performance

Datasets

● Benchmark of evasive applications
● Real-world applications (most popular applications on Google Play)
● Known harmful applications

16



CAR     University of Toronto

Evaluation: EvaDroid Benchmark

● Benchmark of evasive behavior in Android applications

● Each sample tries to hide a payload from executing during dynamic analysis

● Missed payloads: time/sleep-based constraints not yet supported

17

Dynamic Tool Payloads Triggered

CAR 73%

DroidBot 15% [1]

GroddDroid 37% [1]

IntelliDroid 33% [1]

[1] Aleieldin Salem, Michael Hesse, Jona Neumeier, and Alexander Pretschner. 2019. Towards Empirically Assessing Behavior Stimulation Approaches for 
Android Malware. In Proceedings of the 13th International Conference on Emerging Security Information, Systems and Technologies (SECURWARE 2019). IARIA 
XPS Press, 47–52.



CAR     University of Toronto

Evaluation: Most Popular Apps on Google Play

● 310 applications with the most installations on Google Play, across 15 categories.

● Measured ability to reach target security sensitive APIs.

● Compared target coverage against: Monkey, DroidBot [1], APE [2].

18

[1] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. DroidBot: A lightweight UI-guided test input generator for Android. In Proceedings of the 39th International Conference on Software 
Engineering Companion Volume (ICSE-C 2017). IEEE, 23–26.

[2] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao, Qirun Zhang, Jian Lu, and Zhendong Su. 2019. Practical GUI testing of Android applications via model abstraction and refinement. 
In Proceedings of the 41st IEEE/ACM International Conference on Software Engineering (ICSE 2019). IEEE/ACM, 269–280.



CAR     University of Toronto

Effectiveness of Contexts

44.2% of executed target paths were triggered only by CAR

● Context approximation (generated constrained classes) required in 84.1%.
● Context refinement (dynamic error recovery) required in 46.3%.

Estimated false negative rate of 9.1%

19

Triggered only by CAR

Triggered by CAR 
and other tools

Triggered only by Monkey, 
DroidBot, and/or APE

Triggered during application 
launch (i.e. trivial)



CAR     University of Toronto

Evaluation: Coverage of Security Sensitive Behaviors

● Datasets:
○ 310 applications from Google Play

○ 91 malware samples from the 

Creepware dataset [1]

● Triggered sensitive behaviours 

missed by all other tools
○ 90% required context-based 

dependency resolution

20

Sensitive 
functionality

Google Play Creepware

Apps Calls Cxt. Apps Calls Cxt.

Location 84 237 89% 14 42 86%

Personal data 6 6 83% 4 4 100%

Media 3 3 100% 1 1 100%

Telephony 7 11 100% 4 4 50%

Network 59 99 74% 11 20 85%

Files 220 1199 88% 63 361 10%

Databases 76 187 90% 11 47 90%

Reflection 169 447 84% 25 113 75%

Code loading 7 7 71% 10 10 60%

Native code 223 1090 88% 29 120 68%

[1] Kevin A Roundy, Paula Barmaimon Mendelberg, Nicola Dell, Damon McCoy,Daniel Nissani, Thomas Ristenpart, and Acar Tamersoy. 2020. The Many Kindsof 
Creepware Used for Interpersonal Attacks. InProceedings of the 2020 IEEE Symposium on Security and Privacy (SP 2020). IEEE.



CAR     University of Toronto

False Positives

● Randomly sampled 75 paths that were triggered only by CAR.
○ Across different app categories.

○ Manually analyzed feasibility of path.

● 9.0% estimated false positive rate.
○ Primarily due to imprecision in the points-to 

analysis and call-graph, especially for 

third-party libraries.

○ Concentrated in the Games category.

21

Triggered only by CAR

Estimated false positive rate



CAR     University of Toronto

Performance

● Static target path extraction, constraint analysis, context generation
○ Timeout: 240 minutes

● Dynamic path injection
○ Timeout: 3 hours, with 10s throttle between each injected path

○ Average 1.4 seconds for each path to reach target

22



CAR     University of Toronto

Conclusion

● CAR - Context Approximation and Refinement

● Combine static and dynamic analysis for scalable targeted execution
○ Static analysis to generate approximate context

○ Dynamic error recovery to refine context for unresolved dependencies

● Reached 3.1x more sensitive targets than state-of-the-art dynamic tools

● False detection rate of 9.0%

● Reach and triggered more security sensitive behaviors for dynamic analysis

23



Thank you!


